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Abstract 

By formulating the direct integral equation for the Gaussian scaler gravitational potential, we 

were able to generalize the Newtonian law of gravity. Hence the obtained integral equation is 

differentiated to obtain another integral equation for the gravitational force. A new indicator 

(Ri) is then defined. By the application of suitable fundamental solution, it was demonstrated 

that both Gauss and Newton gravity was equivalent only in case of having the (Ri) indicator 

equals to zero. This proves that our universe is topologically 3D infinite (with no external 

boundary). Other cases of having values for the (Ri) indicator due to nearby blackholes 

demonstrated that such blackholes create internal boundaries in our universe.  The developed 

integral equations are then generalized to 4D spatial space to account for possible nearby 

universes. With the proposed generalized integral equations together with the help of suitable 

measurements, a proposal is given for computational methodology that could help in inversely 

locating internal boundaries of our universe or giving us a clue about places where nearby 

universes might be located. 
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1. Introduction 

Gravity is one of the most mysterious phenomena in nature. There are two main interpretations 

of gravity [1]. Either to be represented as a force as in the Newtonian gravity [2] or as a warp 

of space-time continuum as in Einstein’s gravity [3]. Several gravitational theories have been 

reported in the literature [4,5]. 

The well-known gravitational law of Newton is simple and due to the symmetry of all points 

in our universe, theoretically, it should be working everywhere. However, by observations, it 

was understood that it cannot represent the real gravitational field near blackholes or in other 

places in the universe such as those where the flat rotation curve is observed. This might be 

due to the existence of the so-called dark matter. Recently there are several works to modify 

Newton law of gravity to resolve few previously unsolved problems, see for example the work 

in [6-9]. 

As a historical evolution of Gauss representation [10] of the Newtonian gravity, according to 

the nice review article of Prof Cheng [11], the original derivation of Laplace equation was 

based on the study of Newtonian gravitational attraction in 1773. Lagrange recognized the 

fundamental solution of this problem as a potential function of O(1/r) [12] and the gravitational 

force could be represented as the gradient of this potential function. In 1782 and 1787, Laplace 

[13] was the first to form the Laplace equation in polar and in Cartesian coordinates for this 

potential function respectively. In 1813, Poisson [14] formulated the equation of the 

gravitational potential in the well-known (till now) form of Poisson’s equation (equation (1) in 

this paper). 

The integral representation of Gauss’ equations, in most of the work in the literature were 

reported under the umbrella of the indirect integral form as in [8,10]. This form always deals 

with the effect of local gravity caused by local celestial objects ignoring the effect of the 

universe boundaries (if any) and depending on the used fundamental solutions which decay in 

the far field.    

There are many un-resolved questions in modern cosmology, among them is the following 

question: does our universe have a physical boundary? This question was raised in several 

debates on the internet; see for example [15-18]. In most cases, the answer is “no” because 

measurements inform us that our universe has flat curvature so, it is impossible to warp! This 

is not a satisfactory answer; especially for the large-scale flat curvature case might not be a flat 

with respect to much larger scale. 

Up to this point, there are few questions need to be answered: 

1- Despite the symmetry of points in our universe, why does the well-known Newtonian law 

of gravity sometimes fail near blackholes or when having what is called dark matter? 

2- Does our universe have a boundary? And what is its shape (if any)?   
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In this work, we will derive the direct integral equation for the Gaussian potential 

formulation. Hence this integral equation will be differentiated to obtain the gravitational 

force integral equation. To this end, such new integral equation will be discussed for three 

cases of points in our universe: 

3- A point at which the well-known Newton law of gravity is satisfied. 

4- A point nearby a blackhole (a dark star); at which the well-known Newton law of gravity is 

not satisfied. 

5- A point is away from blackhole and at which the well-known Newton law of gravity is not 

satisfied. 

Based on the symmetry of our universe, if the well-known Newton law of gravity is verified 

at a certain point (one of the above-mentioned cases), it should be valid for any other points 

(all other cases). Therefore, what we need only is to generalize this law. Throughout the paper 

and considering the three cases, we will draw conclusions, and we will modify the derived 

integral equation to validate the well-known Newton law of gravity making it real universal 

law of gravity. 

2. The proposed direct integral formulation 

The potential form of Gaussian gravity could be formulated in the following Poisson’s 

equation [10]: 

∇2Φ = 4𝜋𝐺𝜚      

        (1) 

Where  is the gravitational potential, G is the universal gravitational constant and 𝜚 is the 

density of the surrounding celestial objects (planets, dust, stars, etc.). The corresponding direct 

integral equation could be formulated by weighting the potential  by a function * and 

integrating by parts (Applying Green’s identity) twice. This could be written for a point ξ (a 

source point) inside out universe domain Ω as follows: 

Φ(ξ) + ∫
𝜕Φ∗(ξ, x)

𝜕𝑛(x)
Φ(x) 𝑑Γ(x)

⬚

Γ(x)

∗

= ∫ Φ∗(ξ, x)
𝜕Φ(x)

𝜕𝑛(x)
 𝑑Γ(x)

⬚

Γ(x)

+ ∫ Φ∗(ξ, x)[4𝜋𝐺𝜚(x)] 𝑑Ω(x)
⬚

Ω(x)

 

          (2) 

In which x is a field point. It has to be noted that the last domain integral in equation (2) 

represents the particular integral (solution) of equation (1). It will be denoted in this paper by 

PI. Differentiating equation (2) with respect to the coordinates of the source point ξ: 
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Φ;𝑖(ξ) + ∫
𝜕Φ;𝑖

∗ (ξ, x)

𝜕𝑛(x)
Φ(x) 𝑑Γ(x)

⬚

Γ(x)

= ∫ Φ;𝑖
∗ (ξ, x)

𝜕Φ(x)

𝜕𝑛(x)
 𝑑Γ(x)

⬚

Γ(x)

+ ∫ Φ;𝑖
∗ (ξ, x)[4𝜋𝐺𝜚(x)] 𝑑Ω(x)

⬚

Ω(x)

 

          (3) 

In which the ();i  denotes the differentiation with respect to the coordinate of the source point 

ξ. n(x) is the normal at a boundary field point x.  and  are the boundary and the domain of 

our universe. 𝜚(x) is the mass density of the celestial object at the internal field point x. Roman 

lower case indices ranges from 1 to 3; otherwise stated. It has to be noted that the energy-mass 

equivalence could be used in case of having star at the internal field point x. For three-

dimensional spatial space (as in our universe case) and choosing * to be the fundamental 

solution of equation (1), i.e.: 

∇2Φ∗(ξ, x) = 𝛿(ξ, x) 

          (4) 

Where (,x) is the Dirac delta distribution. The solution of equation (4) could be obtained as 

follows [19]: 

Φ∗(ξ, x) =
1

4𝜋𝑟(ξ, x)
 

          (5) 

And its normal derivative with respect to the normal at the field point (x) could be obtained 

as follows: 

 

𝜕Φ∗(ξ, x)

𝜕𝑛(x)
=

−1

4𝜋𝑟2(ξ, x)
𝑟,𝑛 

          (6) 

Where the comma denotes the spatial derivative with respect to the coordinate of the field 

point (x). Noting that: 

𝑟;𝑖(ξ, x) = −𝑟,𝑖(ξ, x) 

          (7) 

Hence 

Φ;𝑖
∗ (ξ, x) =

1

4𝜋𝑟2(ξ, x)
𝑟;𝑖(ξ, x) 

          (8) 
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Equation (3) could be re-written as follows: 

Φ;𝑖(ξ) + 𝑅𝑖(ξ) = ∫ Φ;𝑖
∗ (ξ, x)[4𝜋𝐺𝜚(x)] 𝑑Ω(x)

⬚

Ω(x)

 

          (9) 

Where the indicator Ri is defined as follows: 

𝑅𝑖(ξ) = ∫
𝜕Φ;𝑖

∗ (ξ, x)

𝜕𝑛(x)
Φ(x)𝑑Γ(x)

⬚

Γ(x)

− ∫ Φ;𝑖
∗ (ξ, x)

𝜕Φ(x)

𝜕𝑛(x)
 𝑑Γ(x)

⬚

Γ(x)

 

          (10) 

The gravitational force gi could be defined as follows [12]: 

g𝑖(ξ) = Φ;𝑖(ξ) 

          (11) 

Substituting from equations (11) and (8) into (9) and changing the last integral in equation (9) 

to be a discrete summation over the celestial objects (k), to give:  

g𝑖(ξ) + 𝑅𝑖(ξ) = ∑
−1

4𝜋𝑟2(ξ, x)
𝑟;𝑖(ξ, 𝑥)[4𝜋𝐺𝜚(x𝑘)] 

𝑘

 

          (12) 

Defining the radial vector ei between the field and the source point as:  

𝑒𝑖(ξ, x) = 𝑟;𝑖(ξ, x) 

          (13) 

Substituting into equation (12) to give: 

g𝑖(ξ) + 𝑅𝑖(ξ) = ∑
−𝐺𝜚(xk)

𝑟2(ξ, x)
𝑒𝑖(ξ, x)

𝑘

 

          (14) 

Equation (14) represents the general form of the Newtonian gravitational force. It has to be 

noted that: 

1-m Recalling equation (2), the term of the right-hand side of equation (14) is the PI part. 

2-m The Newton law of gravity in equation (14) is different from the well-known form in the 

literature as the Ri term is now included. 

To this end, we have three cases of the point ξ as will be presented in the next sections. 
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3. Case 1: Our universe external boundary 

The first case is when ξ is an internal point, at which the well-known form of Newton’s 

gravitational law is satisfied. This case represents most of the points inside our universe where 

there is no blackhole is nearby or where there is no effect of dark matter. Referring to equation 

(14), in this case, the value of Ri should be equal to 0. With regards to Ref [20] Chapter 2, page 

85, equation (2.134), this implies that  is infinite or in other words our universe has no external 

boundaries or more precise it is topologically infinite. This is the first conclusion of this paper. 

 

x3

x1

ξ

x1

x2

x3

xk

Topologically 3D 

infinite space

3D spherical boundary 

(blackhole internal 

boundary of the 

universe)

blackhole mass

x2

 

Figure (1): The internal boundary of our universe caused by the presence of blackhole. 
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Figure (2): Alternative 2D representation of the 3D definitions in figure (1). 

 

4,  Case 2: Our universe internal boundaries 

The second case is when ξ is in the vicinity of a blackhole. By observations the well-known 

form of Newton’s law of gravity is not working in this case. However, from the symmetry of 

our universe, all points are similar; therefore, such a law should work everywhere. In this case 

we should think about adding an extra term (not modifying the order of terms as in MOND 

[7]). By referring to equation (14), the only way to make Newton’s law of gravity works is the 

Ri term should have a value.  This means the extremely dense star (or blackhole) makes such 

dense material get out of our universe creating internal spherical boundary as shown in figure 

1 (up to this moment, it is a closed boundary; however, in section 5, we will show that this is 

an open boundary). Figure (2) represents the same information as those in figure (1) but with 

collapsing dimensions by one using index notations, i.e., representing 3D domain as 2D domain 

for further use in the next section. 

To this end, equation (14) is still valid with Ri having a certain value. This is the second 

conclusion of this paper. A proposal is made in section (6) in this paper on how to use 

observation values to compute the radius of such internal boundary.  

It must be noted that, despite the dense material is now outside the boundaries of our universe, 

its effect could still be included in the direct integral equation. This fact is one of the great 

advantages of direct boundary integral equations. 
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Figure (3): Representation of the 4th spatial dimension w.r.t our universe and a certain 

blackhole. 
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Figure (4): Case of having a nearby universe. 

 

5. Case 3: Nearby universes and gravity in 4D spatial space 

In some other cases even when ξ is located away from blackholes, still the well-known 

Newtonian gravitational law is not accurate. For example, the case which referred to as the 

existence of dark matter and the led to the well-known flat rotation curve [7]. Again, from the 
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symmetry of our universe, equation (14) needs to be modified; noting that in such a case Ri is 

equal to zero (provided that ξ is far away from any blackhole). The only way to generalize 

equation (14) now is to propose the existence of additional gravitational field caused by nearby 

another universe. This suggests that both our universe and other nearby universes are embedded 

in 4D spatial space. The following consequences are raised: 

1- The spherical internal boundary that surrounds a blackhole is not a closed boundary as 

previously defined in section (4). It is open in the 4th spatial direction (which we do not feal as 

human beings). Therefore figure (2) should be re-represented as in figure (3). 

2- Figure (4) demonstrates a possible representation of our universe and a nearby universe. 

Remembering that: integral equations can feel the effect of body forces (gravitational fields) 

that located outside its relevant boundaries (as previously mentioned at the end of section (4)). 

Now, we need to modify the integral equation in (14) to account for any gravitational sources 

in nearby universes. In this case we must re-formulate the gravitational integral equations in a 

4D spatial space as follows: recalling equation (4) in four spatial dimension of space:         

∇2Φ̅∗(ξ, x) = 𝛿(ξ, x) 

          (15) 

Where 2 is the 4D Laplacian, 𝛿(ξ, x) is the 4D Dirac delta distribution and Φ̅∗(ξ, x) is the 

fundamental gravitational potential in the 4D spatial space. The solution of equation (15) could 

be obtained as follows [21]: 

Φ̅∗(ξ, x) =
1

4𝜋2𝑅2(ξ, x)
 

          (16)  

Where 𝑅(ξ, x) is the Euclidean distant in the 4D spatial space. Differentiating (16) with respect 

to the coordinate of the source point ξ to give:  

Φ̅∗
;𝐼
⬚

(ξ, x) =
−1

2𝜋2𝑅3(ξ, x)
𝑅;𝐼(ξ, x) 

          (17) 

Where the capital indices range from 1 to 4. The PI term in the case of 4D gravitational force 

could be obtained in a similar way as that of the 3D case, to give: 

𝑃𝐼 = ∑
−𝑒𝐼(ξ, x𝑚)

2𝜋2𝑅3(ξ, x)
[4𝜋𝐺𝜚(x𝑚)] 

𝑚

 

          (18) 

In which the summation is carried out over (m) celestial objects in the nearby universe. Hence 

the additional body force term could be written as follows (recall equation (14)): 
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Figure (5): Adjusting vectors between 3D and 4D spaces. 

 

g𝑖(ξ) + 𝑅𝑖(ξ) = ∑
−𝐺𝜚(x𝑘)

𝑟2(ξ, x)
𝑒𝑖(ξ, x)

𝑘

+ ∑
−2𝐺𝜚(x𝑚)

𝜋𝑅3(ξ, x𝑚)
𝑒𝑖(ξ, x𝑚)

𝑚

 

          (19) 

It must be noted that eI is changed with ei (recall figure (5)) as the integral equation in (19) is 

written within our universe 3D domain, however, it can account for external effects even those 

influenced from higher dimensions.  

3-As observations demonstrated that light cannot escape from blackholes, this could be because 

light might be a 4D fluid influenced by gravitational effects in the 4th spatial dimension only. 

Therefore, it falls into blackholes. This also confirms with observations which demonstrated 

that light is affected by dark matter (or the gravitational field along the 4th spatial dimension). 

However, this statement needs further research.  

4-It seems that there should be a dynamic movement between different universes in the 4D 

spatial space. This is because of the gravitational effects in the 4th spatial space. This, over time, 

will lead to stable configuration which stabilizes the gravitational effect between them. A 

possible configuration is galaxy-galaxy interface (but not always, as this is according to the 
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distribution of matters in the two nearby universes). This could demonstrate why most of (but 

not all) galaxies has the effect of dark matter. 

5-The idea of the container 4D domain could be generalized to 5D, 6D and so on. However in 

such a case, we will have very small gravitational effect as gravity became too weak together 

with large distances. Therefore, this point is outside of the scope of this paper. 

6. A Proposal for computation 

Up to this point, we mainly have two clear conclusions, which are: 

1- Our universe has no external boundary, i.e., it is topologically infinite. In mathematical 

terms, for any ξ point away from the vicinity of black holes, Ri vanishes. 

2- Blackholes mainly form internal boundaries, i.e., Ri is no longer equal to zero. 

Despite our previous mathematical illustrations, still the following two points are not clear: 

1- How to compute the radius of an internal boundary created by a blackhole? Moreover, what 

would be the shape of such a boundary in case of two adjacent blackholes rotating around each 

other? 

2- How to imagine the shape and the distribution of celestial objects in any nearby universe? 

A similar idea to the gravitational anomaly [22] which is mainly used to detect earth formation 

of mountain height, existence of certain materials within the earth crust, etc. is proposed to be 

extended herein. The idea is to detect the difference between the computed (from equation (14) 

or equation (19)) and the measured gravitational potentials. Hence, we could inversely predict 

all relevant information. To apply similar idea to the above-mentioned two points, suitable 

measurements are needed. Unfortunately, such measurements are not available to the author. 

Therefore, the purpose of this section is to propose a possible computational procedure which 

together with relevant measurements could make these two points clear. 

It is important to realize that all equations demonstrated in this paper are time dependent, 

however each frame of time could be considered individually without affecting the previous or 

the next frame in terms of the relevant gravitational field.  

First, we will consider having measurements at point ξ near a blackhole: 

1- A series of the gravitational force measurements should be available at several time intervals 

and at several points ξ located at equal radial distance from the blackhole center.  

2- The value of the computed 3D PI should be subtracted from the value of the measured 

gravitational force (recall equation (14)). 

3- If at each time interval, all the new gravitational forces at points having the same radial 

distance are equal. This means, such a value is the value of Ri (recall equation (14)).  

4- Due to symmetry, the problem now could be simplified to one dimensional problem in the 

polar coordinates, hence the value of radius of the internal boundary created by blackhole could 

be computed.  
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5- If the value of all the new gravitational force (point 2) at points having the same radial 

distance are not equal, this means we have existence of a form of nearby universe gravitational 

effects (recall equation (19)). 

8- In the case of having two adjacent blackholes, similar procedures are followed, however, the 

problem in such a case could not be simplified to one dimensional problem. In this case the 

surface of the internal universe boundary should be looked like an interaction of two 3D 

spheres. To compute the shape of such a surface, we should propose a set of numerical values 

of the radii of these intersecting spheres and using optimization techniques and/or machine or 

deep learning [23], we could inversely compute the shape of such a boundary. It must be noted 

that, in this case the proposed boundary shapes is needed to be discretized into boundary 

elements to compute the value of Ri numerically from equation (14). 

To this end, we have proposed a computational methodology to make the first point clear. 

Considering the second point, we will consider having measurements at point ξ away from the 

vicinity of blackholes. Moreover, at this point the well-known Newton gravitational law does 

not work. In such a case equation (19) should be considered. Moreover, we need to suggest or 

to imagine the shape (and distances in the 4th dimension) of the celestial objects in the proposed 

nearby universe (which might be the gravitational effects of dark matter). In such a case: 

1- Several proposed sets of celestial objects should be proposed first. 

2- For each set, we should consider a proposed set of locations of the proposed objects at a 

series of time intervals corresponding to the given measurements.  

3- At each time interval, first the value of the computed 3D PI from equation (19) should be 

subtracted. This is simply to remove the gravitational effects of the visible 3D objects in our 

universe. Hence, the value of the 4D PI should be computed from equation (19).  

4- The previous 3 steps should be repeated for series of points ξ. Hence with the help of 

optimization techniques and/or machine or deep learning [23], we could inversely compute the 

shape, distributions, and locations (in the 4th dimension) of celestial objects in a nearby 

universe. 

7. Conclusions 

Based on the symmetry of our universe, we postulated the necessity of the applicability of the 

well-known traditional Newtonian law of gravity. By formulation the direct integral equation 

of the Gaussian version of the gravitational field, we were able to generalize the Newtonian 

law of gravity to make it suitable to be applied at any point in our universe. Moreover, we had 

four clear conclusions: 

1- Our universe has no external boundary, i.e., it is topologically infinite. 

2- Blackholes mainly form internal boundaries to our universe. 

3- Our 3D universe is embedded in 4D spatial space where nearby universes could be located. 

4- The gravitational effects of the nearby universes are possible, and this could be an 

explanation of what is called dark matter. 
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Due to the lack of available measurements to the author, a proposal is made to: 

1- Compute the radius of an internal boundary created by a blackhole.  

2- Compute the shape of the internal boundary surface in case of two adjacent blackholes. 

3- Imagine the shape and distribution of celestial objects in any nearby universe. 

The author welcomes the collaboration of other research groups to provide measurements to 

continue these proposed research points. 

Moreover, still there are several open questions proposed in this paper, among them are: 

1- What is the correlation between the radius of the internal boundary caused by a blackhole 

and the well-known Schwarzschild radius [24] in the general theory of relativity?  

2- This paper proposed the light to be fluid flows in the 4D dimensional spatial universe and it 

is affected by the gravitational filed in the 4th dimension only. Therefore, it falls inside 

blockholes. 

3- Due to the gravitational field in the 4D space, there should be a movement between universes 

and movements in the celestial objects in each 3D universe until reaching a steady state 

configuration.  

All These points are open to be discussed in future research. 

The paper has also highlighted the strength of the use of the direct boundary integral equation 

as it can account for the effect of source (load) terms as particular integrals in the following 

two cases: 

1- Such source is outside the boundary of the relevant problem. 

2- Such source is outside the dimensionality of the considered problem. 

The author hopes that the present paper opens a new area of using the boundary integral 

equations and the boundary element methods (in its discretized form) in cosmology. 
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