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Abstract 

The Bean-Rodbell model is used to study the temperature and field dependences of the 

magnetization M, magnetic entropy Sm, total entropy Stotal and magnetic specific heat Cm in 

case of first - order phase transition in the elemental Gd system. For magnetic fields ≤ 5 T and 

temperature range up to 400 K, the isothermal entropy change ΔSm and the adiabatic 

temperature change ΔTad are determined. For a magnetic field change of 5 T, the maximum 

values of ΔSm and ΔTad are 4.599 J/mol. K and 20.1 K, respectively. As the magnetic field 

changes, the value of the Curie temperature Tc changes slightly. In contrast to the second-order 

phase transition, the maximum values of the magnetocaloric effect (MCE) for first order 

transition are larger. The temperature and field dependences of the magnetization, magnetic 

heat capacity, entropy, ΔSm and ΔTad, in addition to Arrott-plots are indicative of first - order 

phase transition (FOPT). 
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1. Introduction 

The magnetic, magnetothermal properties and magnetocaloric effect for the element Gd have 

been extensively reported [1-12]. Both experimental and theoretical studied showed that Gd is 

a ferromagnetic element with Curie temperature around room temperature and is considered as 

a benchmark material for room-temperature MCE materials [11]. Few studies on the (0001) 

surface of Gd have been reported on presence of FOPT [5, 9]. E. P. Nobrega et al., have used 
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mean field approximation and Monte Carlo simulation to study the magnetocaloric effect in 

gadolinium [1]. M. D. Kuz'min and A. M. Tishin reported on Stot, ΔSm and ΔTad in fields up to 

7T both (experimental and theoretical) [2]. The magnetic field and temperature dependences 

of the adiabatic temperature change were measured in single-crystalline and polycrystalline 

gadolinium by Spichkin et al [3]. Oroszlany et al., studied finite temperature effects on the 

electronic structure of the bulk and surface of gadolinium metal using first-principles 

calculation [4]. The magnetic phase transition in (0001) surface of Gd is found to be strongly 

dependent on the presence of an external magnetic field during cooling across Tc [5]. The 

magnetocaloric characteristics of the coarse-grained and as-consolidated nanocrystalline 

gadolinium metals were studied by Hong Zeng et al. [6]. Vieira et al., introduced a 

computationally efficient method for assessing the field-dependent entropy of magnetocaloric 

materials using ab-initio techniques [7]. The temperature dependence of Young's modulus and 

the internal friction have been measured in a high-purity gadolinium single crystal by Spichkin 

et al. [8].  

Up to our knowledge there is no theoretical studies on FOPT in Gd. In the present work we 

report, using the Bean-Rodbell model, on some magnetic and MCE properties of Gd. In 

particular, the temperature and field dependence of magnetization, entropy, heat capacity, ∆Sm 

and ∆Tad and the Arrott plot. 

2. Model and Analysis 

The Bean-Rodbell model is based on the molecular mean field approximation. The primary 

focus of the model is the tight relationship between the lattice spacing and the exchange 

interaction parameter, often known as the Curie temperature. The Curie temperature's volume 

change dependence can be found using [13]:  

Tc = T0 [1 + β (
V−V0

V0
)]    (1) 

In our model the magnetic system is formed by one sublattice (Gd) with angular momentum J. 

Under the mean field approximation with external magnetic field h0, the magnetic state 

equation is : 

M = NμBggdJBJ [
μBggdJH

kBT
]    (2) 

where the mean field H is: 

H = h0 + nGdM + dM3    (3) 

Where gGd is Lange' g factor = 2, BJ is Brillouin function, nGd is the exchange coefficient = 780 

and d is the effective magneto-elastic parameter. 

The Bean- Rodbell model provided a thermodynamic description of the cubic magnetization 

dependency of the mean field resulting from the magnetoelastic interaction, for a single 

magnetic lattice d=C η [14], where C and η are: 

  C =
3

5
(

(J+1)[(2J+1)4−1]

g2J3μB
2[2(J+1)]4) ngd   (4) 
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and 

η =
5

2
(

[4J(J+1)]2kBKT0β2N

[(2J+1)4−1]
)    (5) 

where N is the numbers of ions per cm3 = 2.9 ∗ 1022, kB is Boltzmann constant, K is 

compressibility = 26 ∗ 10−13cm2/dyne, the critical temperature curve's slope on the cell 

deformation is defined by β and T0 is the magnetic ordering temperature in the absence of 

deformation = 295 K. 

According to the Landau theory of phase transitions, a first order magnetic phase transition i 

occurs when η>1, and second order phase transition when η<1. 

The magnetic entropy cab be expressed as function of normalized magnetization σ by [15]: 

               Sm(T, H) = Ln(2J + 1) − (
1

2aJ
) (σ2 +

bJ

2
σ4 +

cJ

3
σ6 + ⋯ )              (6) 

where, aJ =
J+1

3J
 , 

bJ = 0.3
((J+1)2+J2)

(J+1)2  , 

and cJ =
9

1400
(

88(J(J+1))2+108J(J+1)+27

(J+1)4 ) 

the total entropy is the sum of the magnetic, electronic and lattice contributions : 

St = Sm + Se + Sl                 (7) 

The magnetic specific heat can be calculated from the magnetic entropy: 

Cm = T
∂Sm(T,H)

∂T
      (8) 

The MCE is well identified by two quantities: isothermal entropy change ΔSm and adiabatic 

temperature change ΔTad. Entropy change can be calculated by two methods: indirect method 

(Maxwell relation) and direct subtraction. 

∆Sm(T, ∆H) = ∫ (
∂M(T,H)

∂T
)

H

H

0
dH    (9) 

∆Sm = S(T, H = 0) − S(T, H ≠ 0)    (10) 

The adiabatic change in temperature is given by: 

∆Tad = − ∫
T

Ctot(T,H)
 (

∂M(T,H)

∂T
)

H

H

0
dH    (11) 

and in case of a weak dependence on field of the quantity 
T

Ctot
, close to Tc, ΔTad becomes: 

∆Tad ≈ −
T

Ctot(T,H)
 ∫ (

∂M(T,H)

∂T
)

H

H

0
dH    (12) 

The nature of the phase transition is also investigated using the Arrott plots. Positive or 

negative (or S-shaped) slopes of M2 vs. H/M plots indicate the presence a second or first 

order phase transitions respectively. 
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Results and Discussion 

1. Magnetization 

The change in magnetization as a function of temperature is shown in Figure 1. A first-order 

phase transition whereby M changes discontinuously at Curie temperature (Tc) is evident. the 

Tc of Gd in a second-order phase transition is about 298K as known [11] but in FOPT, Tc is 

shifted to 309K. The magnetization curves at different temperatures around Tc, and in field up 

to 10 T, are shown in Figure 2.  

 
 Fig.1. Magnetization vs. temperature for Gd in zero, 1, 3 and 5 T fields. 

 

Fig 2. Isothermal magnetization M(H) of Gd calculated in the temperature range between 290 

and 330 with a step of 10K. 

2. Magnetic and Total Entropy 

The magnetic entropy of  Gd  is shown in Figure 3 for various fields of 0, 1, 3 and 5T. It is 

evident that as temperature rises, the magnetic entropy discontinuously increases until it 
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reaches saturation at over 310 K. The highest magnetic entropy is in fair agreement with the 

theoretical value Sm(max)= R Ln(2JGd+1), which equals 17.2. The total entropy of Gd is 

computed using equation (7). The latent heat, at the critical temperature, in materials with 

FOPT is L=T∆S [17] .  Our calculated value is 362 J/mole. (Figure 4). 

 
Fig 3. Magnetic entropy vs. temperature for Gd in zero, 1, 3 and 5 T fields at FOPT. 

 
Fig 4. Total entropy vs. temperature for Gd in zero and 5 T fields at FOPT.  

3. Magnetic Specific Heat 

Magnetic specific heat is calculated from  Eq.(8). The specific heat peaks shifts toward higher 

temperatures as the field increases. There is a giant magnetic heat capacity value at Tc and zero 

field. (Figure 5). 

Table 1 shows the maximum magnetic specific heat at different fields and at the Curie 

temperature. We notice that the maximum values of Cm are very high compared to those in Gd 

in the absence of magneto-volume coupling. 

Table.1: The maximum values of magnetic specific heat and the corresponding Curie 

temperatures at each magnetic field.  

Magnetic fields H [T] Curie temperature Tc [K] Cm maximum value [J/mol. K] 
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0 309 601.14 

1 314 192.24 

3 322 66.79 

5 327 46.60 

 

 

Fig 5. Cm vs. T for Gd at different fields in case of FOPT. 

 

4. Magnetocaloric Effect 

The magnetic entropy change (ΔSm) is calculated by the direct subtraction method (Eq.10). At 

a first order phase transition, the features are rather different than those in case of second order 

transition (Figure 6). 

 
Fig 6: Magnetic entropy change ΔSm of Gd for magnetic field changes of 1, 3, and 5 T. 
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We calculated the adiabatic temperature change ΔTad for magnetic field changes up to 5 T. 

Figure  7  displays the temperature-dependent ΔTad in different fields. For example, a 

temperature drop of 20 K takes place for a field change of 5 T. It is of interest to compare the 

values of ΔTad, for FOPT and SOPT in Gd. The data is shown in table 2.  

 

 

Fig 7: Adiabatic temperature change ΔTad, as a function of temperature, for field changes of 

1, 3, and 5 T. 

Table.2: The maximum values of ΔSm and ΔTad of Gd element in FOPT and SOPT systems 

[18]. 

  Second-order phase transition First-order phase transition  

ΔTad(max) 

[K] 

ΔSmax [J/mol.K] Tc [K] ΔTad(max) [K] ΔSmax [J/mol.K] Tc [K] ΔH [T] 

⁓ 4 ⁓ 0.6 294 7.68 3.13 309.3 1 

⁓ 8 - 294 15.39 4.04 309.35 3 

⁓ 11 ⁓ 1.5 294 20.1 4.599 309.4 5 

5. Belove- Arrott Plot 

The first-order phase transition in Gd element is confirmed by negative slopes or S-shaped 

curves at 310 to 330K ( Fig 8). 
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Fig 8: Belove Arrott plots, M2 against H/M,  for FOPT Gd. 

 

6. Conclusions 

 We report on the isothermal and MCE quantities e.g.: M, Cm, Sm, ∆S, and ∆Tad in fields up to 

5T and at temperatures up to 400K, for Gd using the mean-field model with magneto-volume 

coupling. Taking the magneto-volume coupling into account has produced features of FOPT in 

the calculated quantities. The largest ΔTad is approximately 20.1 K in a 5T field change, while 

the largest ΔS is found to be approximately 4.599 J/mol.  K, for the same field change. A 

comparison is given between the MCE quantities for FOPT and SOPT gadolinium. The former 

values are higher than the latter. It is planned to study the effect of introducing pressure and 

thermal expansion coefficients, in a future study. 
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